miércoles, 2 de noviembre de 2016

221




2.2.1. Realiza una presentación, con medios informáticos, en colaboración grupal, sobre la morfología neuronal y la sinapsis, describiendo el proceso de transmisión sináptica y los factores que la determinan, el impulso nervioso y los neurotransmisores.


La unidad básica del sistema nervioso es la neurona, una célula especializada que transmite mensajes o impulsos nerviosos a otras neuronas, glándulas y músculos. Las neuronas encierran el secreto del funcionamiento del cerebro y, en consecuencia, de la naturaleza de la conciencia humana. 

Conocemos el papel que cumplen en la transmisión de los impulsos nerviosos, y también sabemos cómo funcionan algunos circuitos neuronales, pero todavía queda mucho por descubrir sobre el funcionamiento de la memoria, la emoción y el pensamiento, procesos todos ellos mucho más complejos. 

Los diferentes tipos de neuronas del sistema nervioso varían enormemente en tamaño y forma, pero todas tienen ciertas características comunes. Del cuerpo celular o soma, salen unas proyecciones denominadas dendritas (de la palabra griega dendron, que significa «árbol»), que reciben los impulsos nerviosos de las neuronas adyacentes. El axón es un tubo estrecho que se extiende desde el soma y que transmite estos mensajes a otras neuronas (o a músculos y glándulas). En el extremo, el axón se divide en un determinado número de pequeñas ramificaciones que terminan en unos pequeños botones llamados terminaciones sinápticas.


El botón terminal no toca la neurona adyacente, sino que hay un ligero espacio entre estos botones y el cuerpo celular o las dendritas de la neurona receptora. Esta unión se denomina sinapsis, y el espacio en sí se denomina espacio sináptico. Cuando un impulso nervioso viaja a través del axón y llega a los botones terminales, provoca la secreción de un neurotransmisor, una sustancia química que se difunde a través del espacio sináptico y estimula a la siguiente neurona, transmitiendo así el impulso de una neurona a otra. Los axones de muchas neuronas forman sinapsis en las dendritas y el cuerpo celular de una única neurona. 


Aunque las neuronas poseen estas características comunes, varían mucho en tamaño y forma. Una neurona de la médula espinal puede tener un axón de 1 ó 2 metros de longitud, que vaya desde el final de la médula a los músculos del dedo gordo del pie; una neurona cerebral puede cubrir tan sólo unas pocas milésimas de centímetro. 

Según su función se distinguen entre neuronas sensoriales o aferentes que envían información desde los tejidos y los órganos sensoriales del cuerpo hacia el interior de la médula espinal y el cerebro y neuronas motoras o eferentes que transmiten información desde la médula espinal y el cerebro hasta los músculos y las glándulas. 
Un nervio es un paquete de axones elongados que comprenden cientos o miles de neuronas. Un único nervio puede estar compuesto de axones tanto de neuronas sensoriales como motoras.

 En general, los cuerpos de las neuronas se agrupan en el sistema nervioso formando grupos. En el cerebro y en la médula espinal, un grupo de cuerpos neuronales recibe el nombre de núcleo. Cuando un grupo de cuerpos neuronales se encuentra fuera del cerebro o de la médula espinal se llama ganglio. 

Además de las neuronas, el sistema nervioso cuenta con un gran número de células no neuronales, llamadas células de glía, y que están intercaladas entre -y a menudo alrededor- las neuronas. Las células de glía son más numerosas que las neuronas en una proporción de 9 a 1 y ocupan más de la mitad del volumen del cerebro. El nombre de glía, derivado de la palabra griega «pegamento», sugiere una de sus funciones, en concreto, el mantener a las neuronas en su sitio. Además, proveen de nutrientes a las neuronas, parecen «mantener el orden» en el cerebro recogiendo y «empaquetando» los productos de desecho, y fagocitando las neuronas muertas y las sustancias extrañas.

La información recorre la neurona en forma de un impulso nervioso llamado potencial de acción: un impulso electroquímico que viaja del cuerpo celular al extremo del axón. Cada potencial de acción es el resultado de movimientos de moléculas eléctricamente cargadas, conocidas como iones. La velocidad del potencial de acción en su viaje por el axón puede variar desde 3 a 300 kilómetros por hora, dependiendo del diámetro del axón; los más grandes suelen ser los más rápidos. 


La velocidad también depende de si el axón está cubierto de una capa de mielina. Esta capa se compone de células gliales especializadas que envuelven al axón, una tras otra, dejando pequeños espacios entre ellas. Estos pequeños espacios se llaman nódulos de Ranvier. La capa de mielina se presenta especialmente en las zonas donde la transmisión rápida del potencial de acción es crítica, como por ejemplo, en los axones que estimulan los músculos esqueléticos. En la esclerosis múltiple, una enfermedad cuyos síntomas aparecen entre los 16 y los 30 años, el sistema inmune ataca y destruye las capas de mielina del organismo, provocando graves disfunciones motoras

NEUROTRASMISORES

Se han identificado más de 70 neurotransmisores distintos, y seguramente se descubrirán más. 

ACETILCOLINA: La acetilcolina está presente en muchas sinapsis del sistema nervioso. Normalmente, es excitadora pero también puede actuar como inhibidora, dependiendo del tipo de molécula receptora que se encuentre en la membrana de la neurona postsináptica. La acetilcolina está presente particularmente en un área del prosencéfalo llamada hipocampo, que juega un papel fundamental en la formación de nuevos recuerdos. Este neurotransmisor es un elemento clave en la enfermedad de Alzheimer, un trastorno devastador que afecta a muchas personas mayores, causando alteraciones en la memoria y en otras funciones cognitivas. Cuanta menos acetilcolina se produce, más severas son las pérdidas de memoria. 

NOREPINEFRINA:  La cocaína y las anfetaminas prolongan la acción de la norepinefrina, ralentizando su reabsorción. Debido a este retardo, las neuronas receptoras se activan durante un periodo más largo de tiempo, lo que produce los efectos psicoestimulantes de estas sustancias. Por el contrario, el litio aumenta la reabsorción de la norepinefrina, lo que deprime el ánimo de la persona. Cualquier sustancia que provoque un aumento o disminución de la norepinefrina en el cerebro está relacionada con la excitación o depresión del estado de ánimo. 

DOPAMINA: químicamente muy similar a la norepinefrina. La liberación de dopamina en ciertas áreas del cerebro produce intensas sensaciones de placer, y actualmente se está investigando el papel de la dopamina en el desarrollo de las adicciones. La existencia de demasiada dopamina en determinadas regiones cerebrales puede causar esquizofrenia, y una cantidad
insuficiente en otras áreas puede degenerar en la enfermedad de Parkinson. Los fármacos utilizados para tratar la esquizofrenia, como la clorpromazina o la clozapina, bloquean los receptores de la dopamina. Por el contrario, la L-dopa, un fármaco que se receta normalmente para tratar la enfermedad de Parkinson, aumenta los niveles de dopamina en el cerebro. 

SEROTONINA: Al igual que la norepinefrina, la serotonina juega un papel fundamental en la regulación del estado de ánimo. Por ejemplo, se han asociado unos bajos niveles de serotonina con sentimientos depresivos. Los inhibidores de la reabsorción de serotonina son antidepresivos que aumentan los niveles de serotonina en el cerebro, bloqueando su reabsorción en las neuronas. El Prozac, Zoloft y Paxil, fármacos que se prescriben para tratar la depresión, son inhibidores de la reabsorción de serotonina. Puesto que la serotonina también es importante para la regulación del sueño y el apetito, también se utiliza en el tratamiento de la bulimia, que es un trastorno alimentario. 



OXITOCINA (del griego oxys "rápido" y tokos "nacimiento"), es una hormona relacionada con los patrones sexuales y con la conducta maternal y paternal que actúa también como neurotransmisor en el cerebro.

En las mujeres, la oxitocina igualmente se libera en grandes cantidades tras la distensión del cérvix uterino y la vagina durante el parto, así como en respuesta a la estimulación del pezón por la succión del bebé, facilitando por tanto el parto y la lactancia.

También se piensa que su función está asociada con el contacto y el orgasmo. En el cerebro parece estar involucrada en el reconocimiento y establecimiento de relaciones sociales y podría estar involucrada en la formación de relaciones de confianza1 y generosidad entre personas. Los investigaciones han descubierto que la oxitocina podría jugar un papel relevante en la aparición del autismo

En los humanos se libera con un abrazo, una simple caricia, un beso o mirando a los ojos de un ser querido.
Actúa sobre la amígdala, el centro emocional del cerebro que controla respuestas como el pánico o la ira.
Estudios muestran que administrando oxitocina por vía nasal a individuos sanos se reduce la activación de circuitos cerebrales vinculados al miedo, aumenta el contacto visual con otras personas y se incrementa la confianza y la generosidad"

Las siguientes actividades incrementan los niveles de oxitocina naturalmente:

Recibir un masaje.
Abrazos y besos.
Tener relaciones sexuales placenteras.
Acariciar a una mascota.
Comer en compañía de un amigo.

http://iespedrosalinas.org/index.php?option=com_k2&view=item&id=406:temas-psicolog%C3%ADa

No hay comentarios:

Publicar un comentario